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1 Introduction

Recently in series of very interesting papers P. Hořava suggested new approach for the study

of membranes and quantum gravity theories known as Hořava-Lifshitz gravities [1–4].1 The

attractive property of Hořava-Lifshitz gravity is that it is power-counting renormalizable.

The second important property of the Hořava construction is detailed balance condition.

This condition is based on the idea that the potential term in the Lagrangian of D + 1

dimensional theory descants from the variation of D dimensional action. In fact, this

construction is based on the following idea known from the condensed matter physics [58]:

Is it possible to find such a D + 1 dimensional quantum theory such that its ground state

wave functional reproduces the partition function of D dimensional theory? This idea

was elaborated in details in [58] and recently in series of papers by P. Hořava with many

interesting results. In particular, if we start with known classical universality classes in D

dimension we can construct a quantum critical systems in D + 1 dimensions.

It is very interesting that similar situation naturally occurs in case of topological

string theory [59, 60], OSV conjecture, topological M-theory, together with non-critical

M-theory [61–63].2

As was carefully discussed recently in [11], there are at least four versions of the

theory: with/without the detailed balance condition; and with/without the projectability

condition. As we will show bellow the projectability condition means that the lapse function

depends on time only. It was argued in many papers that the most promising is the version

1Hořava’s ideas were elaborated from different points of view in couple of papers, see for example [5–

57, 68–72].
2For recent discussion and extensive list of references, see [64].
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without the detailed balance condition with the projectability condition that has a potential

to be theoretically consistent and cosmologically viable.

Even if there are doubts considering the detailed balance condition in general relativity

we feel that it deserves to be studied further. In particular, let us consider following

situation when we have a D dimensional quantum theory with corresponding partition

function Z. Then we consider Hamiltonian of D + 1 dimensional theory and ask the

question under which condition this Hamiltonian annihilates the vacuum wave functional

of given D + 1 dimensional theory where the norm of this vacuum state coincides with the

partition function Z. We show that there exists an infinite number of such Hamiltonians

that can be defined as a Taylor series in powers of creation and annihilation operators

where the annihilation operator annihilates the vacuum wave functional.

We apply this construction to the case of theory of gravity and consider two situations.

In the first one we follow the original Hořava’s approach [3] where we start with partition

function of D dimensional gravity and demand that there exists quantum gravity in D + 1

dimension such that the norm of the ground state functional coincides with the partition

function of D dimensional theory. Then we show that we can construct infinite number of

Hamiltonians that annihilate this ground state. In other words we find an infinite number

of Hamiltonians that obey the detailed balance conditions. Clearly these Hamiltonians

are well defined at the classical level due to the well known peculiarities that arise in

non-linear quantum theories. Even at the classical level these Hamiltonians have many

interesting properties that should be studied further. For example, for the special form of

the Hamiltonian that will be specified below we determine corresponding Lagrangian and

we find that the action for this theory is manifestly invariant under spatial diffeomorphism.

Then, following [3] we perform an extension of given symmetries that leads to the action

that is invariant under foliation preserving diffeomorphism. We find new non-linear theory

of gravity that resemble f(R) theory of gravity3 that however is not invariant under full D+

1 diffeomorphism. It would be certainly interesting to study the cosmological implications

of this model exactly in the same way as in case of ordinary f(R) theory of gravity.

Certainly we can also consider the more general form of Hamiltonians then the Hamiltonian

explicitly studied in this paper.

In the second case we consider an alternative form of the principle of detailed balance.

We consider the situation when the Hamiltonian density of D + 1 dimensional theory is a

linear combination of the diffeomorphism and Hamiltonian constraint. Further we assume

that the Hamiltonian constraint has the special property that it annihilates the vacuum

wave functional that has the norm equal to the partition function of D dimensional theory

of gravity. Since this vacuum wave functional is manifestly invariant under D dimensional

spatial diffeomorphisms it is annihilated by the generator of diffeomorphism and conse-

quently by the Hamiltonian of the theory. We would like to stress that at this moment we

only assume that the Hamiltonian annihilates the vacuum wave functional but we do not

demand that it should annihilate all states of the theory. On the other hand we will argue

that the Hamiltonian framework implies that the Hamiltonian should annihilate all states

3For review and extensive list of references, see [65, 73, 74].
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in case of the quantum mechanical formulation of the theory. Explicitly, following the

standard approach we determine an action corresponding to given Hamiltonian. Then we

continue in the study of this theory and develop the Hamiltonian formalism that follows

from this action. Since the action contains the fields N(t,x) and Ni(t,x) without time

derivatives we find that the absence of corresponding momenta imply the primary con-

straints of the theory πN (x) ≈ 0 , πi(x) ≈ 0. The consistency of these constraints with the

time evolution of the system implies the secondary constraints H0(x) ≈ 0 , Hi(x) ≈ 0.

Following the Dirac approach we then find that all quantum states of the theory have to be

annihilated by these constraints as opposite to the original assumption that the state that

should be annihilated by H is the vacuum state only. On the other hand we will argue that

these theories suffer from the same problems as the Hořava’s theories without projectability

conditions [37]. However using the fact that these theories are constructed as theories that

obey the detailed balance conditions it is possible to find the algebra of constraints that

close however that do not support any physical excitations at all. In other words these

theories are topological. As the second example of solvable theory we consider the case of ul-

tralocal theory and we argue the algebra of constraints closes as in standard gravity theory.

Let us outline our results. Imposing the detailed balance condition we are able to find

new D + 1 f(R) theories of gravity with or without projectability conditions. We would

like to stress that these theories should be considered as toy models of gravity theories. It

would be interesting to study the cosmological implications of these theories in the same

way as in case of f(R) theories of gravity with full diffeomorphism invariance.

This paper is organized as follows. In next section (2) we present the main idea of our

construction on the simple case of collection of D scalar fields in p + 1 dimensions. Then

in section (3) we perform the construction of new D + 1 dimensional theory of gravity

that is invariant under foliation preserving diffeomorphism. In section (4) we suggest an

alternative way how to impose the condition of the detailed balance in case of D + 1

dimensional theory of gravity and we argue that this procedure leads to D +1 dimensional

theory without projectability condition.

2 Non-linear scalar Lifshitz theory

In this section we describe the construction of non-linear Lifshitz theory based on the de-

tailed balance condition on the simple example of collection of D scalar fields in p dimen-

sions. This procedure is based on an idea is that the norm of the ground state functional

of p + 1 dimensional theory coincides with the partition function of any p dimensional

theory. We should stress that this requirement is pure formal since we do not carry about

issues whether this partition function is well defined. Very nice discussion of issues that

are related to the construction of wave functionals can be found in paper [66]. Despite of

this fact we proceed further and we find that we are able to find new interesting class of

theories at least at the classical level.

Let us start in the same way as in [3, 58] and consider the situation when we have

a collection of D scalar fields defined on p dimensional Euclidean space with coordinates

– 3 –
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x = (xi) , i = 1, . . . , p with following action

W =
1

2

∫

dpxδij∂iΦ
M∂jΦ

NgMN , (2.1)

where gMN ,M,N = 1, . . . ,D is a constant positive definite symmetric matrix. Clearly

we can consider more general form of the action than the one given in (2.1) but in order

to explain the main idea of the constructions we restrict ourselves to the simple action

given above.

As in standard quantum mechanics the fundamental object of this theory is the par-

tition function Z
Z =

∫

DΦ(x) exp[−W (Φ(x))] (2.2)

that is defined as a path integral on the space of field configurations ΦM (x). Then let us

assume an existence of p+1 dimensional quantum field theory with collection of the opera-

tors Φ̂M (x) and their conjugate momenta Π̂M (x) and that obey the canonical commutation

relation

[Φ̂M (x), Π̂N (y)] = iδM
N δ(x − y) . (2.3)

Further, we introduce eigenstate of Φ̂M (x) that is the state |Φ(x)〉 that obeys

Φ̂M(x) |Φ(x)〉 = ΦM(x) |Φ(x)〉 . (2.4)

In the Schrödinger representation any state of given system is represented as the state

functional Ψ[Φ(x)] and the standard interpretation of quantum mechanics implies that

Ψ[Φ(x)]Ψ∗[Φ(x)] is a density on the configuration space. Note also that action of the op-

erator Φ̂M (x) on this state functional corresponds to multiplication with ΦM (x). On the

other hand the commutation relation (2.3) implies that in the Schrödinger representation

the operator Π̂M (x) is equal to

Π̂M (x) = −i
δ

δΦM (x)
. (2.5)

Our goal is to formulate p + 1 dimensional system with the property that the norm of its

ground-state functional Ψ0[Φ(x)] reproduces the partition function (2.2)

〈Ψ0|Ψ0〉 =

∫

DΦ(x)Ψ∗
0[Φ(x)]Ψ0[Φ(x)] =

∫

DΦ(x) exp[−W (Φ(x))] . (2.6)

Everything that has been done up to this point is well known. However we now make

a presumption that the Hamiltonian of p + 1 dimensional theory has the form

Ĥ(x) = κ2

(

∞
∑

n=0

ĉn(Φ̂)(Q̂†
MgMN Q̂N )n − ĉ0(Φ̂)

)

,

where κ is a coupling constant, ĉn(Φ̂) are functions that generally depend on the operators

Φ̂ and where Q̂M , Q̂
†
M are defined as

Q̂M = iΠ̂M +
1

2

δW [Φ̂]

δΦ̂M (x)
, Q̂

†
M = −iΠ̂M +

1

2

δW [Φ̂]

δΦ̂M (x)
. (2.7)
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Note that in the Schrödinger representation the operators Q̂M , Q̂
†
M are equal to

Q̂M =
δ

δΦM (x)
+

1

2

δW [Φ]

δΦM (x)
, Q̂

†
M = − δ

δΦM (x)
+

1

2

δW [Φ]

δΦM (x)
. (2.8)

Let us assume that the vacuum wave functional takes the form

Ψ0[Φ(x)] = exp

(

−1

2
W

)

= exp

(

−1

4

∫

dpxδij∂iΦ
M (x)gMN∂jΦ

N (x)

)

. (2.9)

Then it is easy that Q̂M defined in (2.8) annihilates Ψ0

Q̂MΨ[Φ(x)] = 0 (2.10)

as follows from the fact that

iΠ̂(x)Ψ0[Φ] =
δ

δΦM (x)
Ψ0[Φ] = −1

2

δW

δΦM (x)
Ψ0[Φ] . (2.11)

In other words the vacuum wave functional is annihilated by Q̂M and by construction it is

an eigenstate of the Hamiltonian with zero energy. Further, the norm of the vacuum wave

functional coincides with the partition function of p dimensional theory.

It is clear that it this way we can define an infinite number of Hamiltonians that obey

the detailed balance condition. In what follows we restrict ourselves to the following form

of the Hamiltonian density4

Ĥ = κ2

(
√

α̂(Φ̂) + β̂(Φ̂)

(

Π̂MgMN Π̂N +
1

4

(

δW

δΦ̂M
gMN

δW

δΦ̂N

))

−
√

α̂(Φ̂)

)

, (2.12)

where α̂, β̂ generally depend on Φ̂ and where the square root function in the definition of

the Hamiltonian is defined as the Taylor polynomial in (Q̂†Q̂)n written explicitly in (2.7).

As the next step we determine the Lagrangian from the classical form of the Hamil-

tonian density (2.12). Using the Hamiltonian equation ∂tΦ = {Φ,H} and the form of the

Hamiltonian density (2.12) we find

∂tΦ
M =

{

ΦM ,H
}

= κ2 βΠNgNM

√

α + β(ΠMgMNΠN + 1

4

δW
δΦM gMN δW

δΦN )
(2.13)

so that the Lagrangian density is equal to

L = ΠM∂tΦ
M −H =

= −κ2

√

α(Φ) +
β(Φ)

4

δW

δΦM
gMN

δW

δΦN

√

1 − 1

κ4β(Φ)
∂tΦMgMN∂tΦN + κ2

√

α(Φ). (2.14)

4The reason for this choose of the Hamiltonian density is that its functional form allows to easily find

the closed relation between time derivatives of canonical variables and conjugate momenta. Clearly this

is not the case for general form of the Hamiltonian density (2.12). The analysis of more general forms of

Hamiltonian densities will be given in future.
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Let us now simplify the action further and consider the case when α = 1, β = const. Then,

since the variation of (2.1) is equal to

δW

δΦM (x)
= −∂i∂iΦ

N (x)gNM (2.15)

we find that the action of p + 1 dimensional theory takes the form

S = −κ2

∫

dpxdt

√

1 +
β

4
(∂i∂iΦM )gMN (∂j∂jΦN)

√

1 − 1

κ4β
∂tΦMgMN∂tΦN . (2.16)

If we now expand this action up to quadratic order in fields we find the standard Lifshitz

action (up to trivial rescaling of β)

S = −κ2

∫

dtdpx−
∫

dtdpx[κ2β
1

8
(∂i∂iΦ

M )gMN (∂j∂jΦ
N )− 1

2κ2β
∂tΦ

MgMN∂tΦ
N ] . (2.17)

In other words for small spatial and time derivatives the Lagrangian (2.14) reduces to the

Lifshitz scalar theory.

3 Hořava-Lifshitz f(R) theory of gravity-with projectability condition

Let us now turn to the main topic of this paper which is a construction of the Hořava-

Lifshitz f(R) theories of gravity in D + 1 dimensions. This construction is based on

assumption that we have D+1 dimensional quantum theory of gravity that is characterized

by following quantum Hamiltonian density

Ĥ = κ2
√

ĝ

(

∞
∑

n=0

ĉn(ĝij)

(

Q̂†ij 1

ĝ
ĜijklQ̂

kl

)n

− ĉ0(ĝij)

)

, (3.1)

where

Q̂†ij = −iπ̂ij +
√

ĝÊij(ĝij) , Q̂ij = iπ̂ij +
√

ĝÊij(ĝij) , (3.2)

and where ĝ = det ĝij and κ is a coupling constant of given theory. Note that the funda-

mental operators of quantum theory of gravity are metric components ĝij(x) , i = 1, . . . ,D

together with their conjugate momenta π̂ij(x). These operators obey the commutation

relations

[ĝij(x), π̂kl(y)] =
1

2
(δk

i δl
j + δl

iδ
k
j )δ(x − y) . (3.3)

Further, ĉn defined in (3.1) are scalar functions that depend on ĝij only. It is clear that in

the Schrödinger representation the operators (3.2) take the form

Q̂ij(x) = − δ

δgij(x)
+

√
g(x)Eij(x) , Q̂†ij(x) =

δ

δgij(x)
+

√
g(x)Eij(x) . (3.4)

The next goal is to specify the form of the operators Eij . To do this we assume that the

theory obeys the detailed balance condition so that

√
g(x)Eij(x) =

1

2

δW

δgij(x)
, (3.5)

– 6 –
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where W is an action of D dimensional gravity. As in [3] we construct the vacuum wave

functional of D + 1 dimensional theory as

Ψ[g(x)] = exp

(

−1

2
W

)

, (3.6)

where W is the Einstein-Hilbert action in D dimensions

W =
1

2κ2
W

∫

dDx
√

gR . (3.7)

Generally the action W could also contains additional terms that are functions of metric

however the explicit form of W will not be important in following discussion.

The form of the vacuum wave functional (3.6) implies that it is annihilated by (3.1).

Further as a consequence of the detailed balance condition the norm of the functional (3.6)

coincides with the partition function of D dimensional Euclidean gravity. In other words we

have again infinite number of possible Hamiltonians that annihilate the vacuum state (3.6)

and that are defined using the principle of detailed balance.

In order to find the Lagrangian formulation of this theory we now consider the classical

form of the Hamiltonian density (3.1). In order to simplify the analysis we restrict ourselves

to the following explicit form of the Hamiltonian density

H = κ2√g

(
√

1 + β(−iπij +
√

gEij)
1

g
Gijkl(iπkl +

√
gEkl) − 1

)

, (3.8)

where Gijkl denotes the inverse of the De Witt metric

Gijkl =
1

2
(gikgjl + gilgjk) − λ̃gijgkl (3.9)

with λ̃ = λ
Dλ−1

. The ”metric on the space of metric”, Gijkl is defined as

Gijkl =
1

2
(gikgjl + gilgjk − λgijgkl) (3.10)

with λ an arbitrary real constant. Note that (3.9) together with (3.10) obey the relation5

GijmnGmnkl =
1

2
(δk

i δl
j + δl

iδ
k
j ) . (3.11)

The form of the Hamiltonian density (3.8) implies following time derivative of gij

∂tgij = {gij ,H} = κ2
βGijklπ

kl

√
g
√

1 + β(−iπij +
√

gEij)1

g
Gijkl(iπkl +

√
gEkl)

. (3.12)

5Note that we use the terminology introduced in [3] and that we review there. In case of relativistic

theory, the full diffeomorphism invariance fixes the value of λ uniquely to equal λ = 1. In this case the

object Gijkl is known as the ”De Witt metric”. We use this terminology to more general case when λ is not

necessarily equal to one.

– 7 –
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With the help of this result we can express πij as a function of gij and ∂tgij . Then we

easily find the corresponding Lagrangian density in the form

L = ∂tgijπ
ij −H = −κ2√g

(

√

1 + βEijGijklEkl

√

1 − 1

κ4β
∂tgijGijkl∂tgkl − 1

)

. (3.13)

By construction the action

S =

∫

dDxL , (3.14)

where L is given in (3.13) is invariant under the global time translation t′ = t+δt , δt = const

and under the spatial diffeomorphism

x′i = xi(x) . (3.15)

This follows from the fact that we presumed that the functional W is invariant under the

spatial diffeomorphism under which the metric gij and tensor Eij transform as

g′ij(x
′) = gkl(x)

(

D−1
)k

i

(

D−1
)l

j
,

E′ij(x′) = Ekl(x)Di
kD

j
l , (3.16)

where

Di
j =

∂x′i

∂xj
, Di

j

(

D−1
)j

k
= δi

k . (3.17)

Using the transformation property of gij we find that the metric Gijkl transforms as

G′
ijkl(x

′) = Gi′j′k′l′(x)
(

D−1
)i′

i

(

D−1
)j′

j

(

D−1
)k′

k

(

D−1
)l′

l
(3.18)

and the invariance of the action under the spatial diffeomorphism (3.15) is obvious.

3.1 Extension of symmetries

We argued that the action formulated above is invariant under D dimensional spatial dif-

feomorphism. As in [2, 3] we extend these symmetries to the diffeomorphisms that respect

the preferred codimension-one foliation F of the theory by the slices of fixed time. By def-

inition such a foliation-preserving diffeomorphism consists a space-time dependent spatial

diffeomorphisms as well as time-dependent time reparameterization. These symmetries are

now generated by infinitesimal transformations

δxi ≡ x′i − xi = ζi(t,x) , δt ≡ t′ − t = f(t) . (3.19)

It was shown in [3] that the metric transform under (3.19) as

g′ij(t
′,x′) = gij(t,x) − gil(t,x)∂jζ

l(t,x) − ∂iζ
k(t,x)gkj(t,x). (3.20)

The original action (3.14) is not invariant under (3.19). On the other hand it was shown

in [3] that in order to find an action that is invariant under (3.19) it is necessary to introduce

new fields Ni(t,x), N(t) that transform under (3.19) as

N ′
i(t

′,x′) = Ni(t,x) − Ni(t,x)ḟ(t) − Nj(t,x)∂iζ
j(t,x) − gij(t,x)ζ̇j(t,x) ,

N ′(t′) = N(t) − N(t)ḟ(t). (3.21)

– 8 –
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As the next step we have to replace volume element dtdDx
√

g with dtdDxN
√

g and the

time derivative of gij with

∂tgij ⇒ 2Kij , (3.22)

where Kij is defined as

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) , (3.23)

and where ∇i is D dimensional covariant derivative constructed from the metric compo-

nents gij . It can be shown that (3.23) transform covariantly under (3.19)

K ′
ij(t

′,x′) = Kij(t,x) − Kik(t,x)∂jζ
k(t,x) − ∂iζ

k(t,x)Kkj(t,x). (3.24)

Performing these substitutions in (3.14) we find the gravity action invariant under the

foliation preserving diffeomorphism in the form

S = −κ2

∫

dtdDx
√

gN

(

√

1 + βEijGijklE
kl

√

1 − 4

κ4β
(KijKij − λK2) − 1

)

. (3.25)

Note also that linearized form of the action (3.25) takes the form

S =
1

2

∫

dtdDx
√

gN

(

4

κ2β
(KijK

ij − λK2) − κ2βEijGijklE
kl

)

(3.26)

that after trivial rescaling of parameter β resembles the Hořava’s form of the gravity theory.

For that reason we can consider the action (3.25) as the f(R)-like version of the Horařava-

Lifshitz gravity.

In the next subsection we develop the Hamiltonian formalism of given theory.

3.2 Hamiltonian formalism

The dynamical variables of the theory are Ni(x), πi(x), N, πN together with gij(x), πij(x)

with corresponding non-zero Poisson brackets

{

gij(x), πkl(y)
}

=
1

2
(δk

i δl
j+δl

iδ
k
j )δ(x−y) ,

{

N i(x), πj(y)
}

= δi
jδ(x−y) ,

{

N,πN
}

= 1 .

(3.27)

Note that N(t) and πN (t) are homogeneous functions of time. In other words they obey

projectability condition which has an important consequence for the consistency of the

Hořava-Lifshitz theory [11]. Further, as follows from the form of the action (3.25) the

momenta πij conjugate to gij can be expressed as function of gij and ∂tgij from the relation

πij(x) =
δS

δ∂tgij(x)
=

2

κ2β

√
gGijklKkl

√

1 − 4

βκ4 KijGijklKkl

√

1 + βEijGijklE
kl. (3.28)

On the other hand since the time derivative of Ni and N do not appear in the action (3.25)

we find that the momenta πi and πN form the primary constraints of the theory

πi(t,x) ≈ 0 , πN (t) ≈ 0 . (3.29)
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Finally the standard definition of the Hamiltonian density gives

H = ∂tgijπ
ij − L =

= κ2√gN

(
√

1 +
1

g
πijGijklπkl + βEijGijklEkl − 1

)

+

+(∇iNj + ∇jNi)π
ij . (3.30)

As a consequence we find that the Hamiltonian is equal to

H =

∫

dDxH =

∫

dDx(N(t)H0(x, t) + Ni(t,x)Hi(x, t)) ,

H0 = κ2√g

(
√

1 +
1

g
πijGijklπkl + EijGijklEkl − 1

)

, Hi = −2∇jπ
ij , (3.31)

where we ignore boundary terms.

The primary constraints πi(x) ≈ 0 , πN (t) ≈ 0 have to be preserved during the time

evolution of the system and consequently

∂tπ
i(x) =

{

πi(x),H
}

= −Hi(x) ≈ 0 , ∂tπ
N (t) = {N(t),H} = −

∫

dDxH0(x) ≈ 0 .

(3.32)

Since the right side of the equations above have to vanish on constraint surface we find

that the consistency of the primary constraints generate the secondary ones

Hi(x) ≈ 0 , TT ≡
∫

dDxH0(x) ≈ 0 . (3.33)

It is convenient to introduce the smeared form of the diffeomorphism constant TS defined as

TS(ζ) =

∫

dDxζi(x)Hi(x). (3.34)

The next goal is to calculate the Poisson bracket of constraints TT and TS . Trivially we

have that

{TT ,TT } = 0 . (3.35)

Now we calculate the Poisson brackets between TS(ζ) and T

{TS(ζ),TT } = −
∫

dDx(ζk∂kH0 − ∂k(H0)ζ
k) = 0 , (3.36)

where we used the Poisson bracket between TS(ζ) and H0
6

{TS(ζ),H0} = −∂kζ
kH0 − ζk∂kH0. (3.37)

Finally we calculate the Poisson bracket

{TS(ζ),TS(ξ)} = TS(ζi∂iξ − ξi∂iζ). (3.38)

6For more detailed calculation, see (4.16).
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In summary we find that the algebra of constraints for generalized Hořava-Lifshitz theory

that respects the projectability condition takes very simple form

{TT ,TT } = 0 ,

{TS(ζ),TT } = 0 ,

{TS(ζ),TS(ξ)} = TS(ζi∂iξ − ξi∂iζ). (3.39)

The fact that the algebra of constraints is closed for any theory of gravity that obeys the

projectability condition is very attractive. This result in contrast with the situation of

gravity without the projectability condition when the algebra is not closed and the struc-

ture constants of the theory depend on phase space variables. On the other hand there

are still many unsolved problems and issues considering Hořava-Lifshitz gravity theories as

was reviewed carefully in [11, 16] so that these results should be taken with great care.

4 Hořava-Lifshitz f(R) theory of gravity-without projectability condi-

tion

In this section we address the question of the formulation of the local form of the condition

of detailed balance. We again start with the assumption that one can define the vacuum

wave functional of D+1-dimensional quantum theory and that this functional has the form

as in (3.6). Now we demand that this vacuum wave functional is annihilated by

Ĥ =

∫

dDx
(

N(t,x)Ĥ0(t,x) + Ni(t,x)Ĥi(t,x)
)

, (4.1)

where Ĥi is the generator of spatial diffeomorphism

Ĥi(x) = −2∇̂jπ̂
ji(x) , (4.2)

and where we assume that Ĥ0 can be written as

Ĥ0(x) = κ2
√

ĝ

(

∞
∑

n=0

ĉn(ĝij)

(

Q̂†ij 1

ĝ
ĜijklQ̂

kl

)n

− ĉ0(ĝij)

)

, (4.3)

where Q̂ij, Q̂†ij were defined in (3.2) and the functional form of Êij follows from (3.5). Then

it is obvious that the local constraint Ĥ0(x) annihilates the vacuum wave functional (3.6).

Since W is invariant under spatial diffeomorphism by construction we find that the vacuum

wave functional Ψ0 is annihilated by Ĥ (4.1) as well. We should again stress the important

fact that (4.1) contains the lapse function that depends on x as well. Note that we only

demand that this Hamiltonian annihilates the vacuum state functional while its action on

other states of the theory is not specified. This is different from the standard constraint

of general relativity where the Dirac analysis implies that all wave functionals should be

annihilated by Hamiltonian and diffeomorphism constraints. On the other hand we will see

below that the correct Hamiltonian treatment of the theory specified by the Hamiltonian

above will lead to the requirement that all states should be annihilated by (4.1).

– 11 –
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As usual we are interested in the Lagrangian formulation of given theory. In order to

find it we consider the classical form of the Hamiltonian (4.1) and we also restrict ourselves

to the following form of the Hamiltonian density H0

H0 = κ2√g

(
√

1 + β(−iπij +
√

gEij)
1

g
Gijkl

(

iπkl +
√

g
1

2
Ekl

)

− 1

)

. (4.4)

Then using (4.1) and (4.4) we find that the time derivative of gij is equal to

∂tgij = {gij ,H} = κ2 Nβ√
g

Gijklπ
kl

√

1 + β
g
πijGijklπkl + βEijGijklEkl

+ ∇jNi + ∇iNj , (4.5)

where we used the canonical Poisson brackets

{

gij(x), πkl(y)
}

=
1

2
(δk

i δl
j + δl

iδ
k
j )δ(x − y) (4.6)

and the fact that
{

gij(x),

∫

dDyNk(y)Hk(y)

}

= −2

∫

dDyNk(y)∇l(
{

gij(x), πkl(y)
}

) =

= ∇jNi(x) + ∇iNj(x). (4.7)

The equation (4.5) implies that it is natural to introduce the tensor Kij = 1

2N
(∂tgij −

∇jNi −∇iNj) so that (4.5) can be written as

2Kij = κ2 β√
g

Gijklπ
kl

√

1 + β
g
πijGijklπkl + βEijGijklEkl

. (4.8)

Clearly using this relation we can express πij as a function of gij ,Kij . Then after some

algebra we find the Lagrangian in the form

L =

∫

dDx(∂tgijπ
ij − NH0 − NiHi) =

= −κ2

∫

dDx
√

gN

(

√

1 + βEijGijklEkl

√

1 − 4

κ4β
KijGijklKkl − 1

)

. (4.9)

We see that this Lagrangian takes completely the same form as the Lagrangian given

in (3.25). However it is crucial that in the new formulation the field N depends on x

and t as well. In other words we derived the Hořava-Lifshitz f(R) gravity theory without

projectability condition.

4.1 Hamiltonian formalism

We see that the Lagrangian density (4.9) depends on N(t,x) and N i(t,x) that can be

interpreted as additional fields in the theory. Then when we proceed to the Hamiltonian

formalism we find that the phase space of the theory is spanned by N,N i with conjugate

momenta πN , πi and metric components gij with conjugate momenta πij. The fact that the

– 12 –
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Lagrangian (4.9) does not contain time derivatives of N and N i implies that the momenta

πi(x), πN (x) vanish and form the primary constraints of the theory. Finally the standard

analysis of constraints system implies that the Hamiltonian (4.1) with H0 given in (4.4) is

a sum of the local constraints

H0(x) ≈ 0 ,Hi(x) ≈ 0 . (4.10)

The quantum mechanical analogue of these constraints is the requirement that all wave

functionals should be annihilated by them. Observe that this is more stronger requirement

then the formulation of the local balance condition given in the first paragraph of this

section. In summary, the consistency of the theory defined by (4.9) implies that at the

classical level the Hamiltonian (4.1) should be sum of local constraints. The quantum

mechanical formulation is that all wave functionals should be annihilated by the quantum

Hamiltonian (4.1) again with Ĥ0 given in (4.4).

Now we start to study the algebra of constraints Hi,H0 when we presume the most

general form of the constraint H0

H0 = κ2√g

(

∞
∑

n=0

cn(gij)

(

Q†ij 1

g
GijklQ

kl

)n

− c0(gij)

)

=

= κ2√g

∞
∑

n=1

cn(gij)

(

Q†ij 1

g
GijklQ

kl

)n

. (4.11)

If we introduce the smeared form of the diffeomorphism constraint TS(ζ) =
∫

dDxζi(x)Hi(x) we can easily determine Poisson brackets

{TS(ζ), gij} = −ζk∂kgij − gjk∂iζ
k − gik∂jζ

k ,
{

T(ζ), πij
}

= −∂k(π
ijζk) + πjk∂kζ

i + πik∂kζ
j ,

{TS(ζ),
√

g} = −ζk∂k
√

g − ∂kζ
k√g ,

{

TS(ζ),
1

2

δW

δgij

}

= −∂k

(

1

2
ζk δW

δgij

)

+
1

2

δW

δgik

∂jζ
k + ∂iζ

k 1

2

δW

δgkj

. (4.12)

Then it is easy to find that

{

TS(ζ), Qij
}

= −∂k(Q
ijζk) + ∂kζ

iQkj + Qik∂kζ
j ,

{

TS(ζ), Q†ij
}

= −∂k

(

ζkQ†ij
)

+ ∂kζ
iQ†kj + Q†ik∂kζ

j. (4.13)

For further purposes we also determine following Poisson bracket
{

TS(ζ),
1

g
Gijkl

}

= (2∂kζk(g) + ζk∂k(g))
1

g2
Gijkl −

−1

g
(∂pGijklζ

p + ∂iζ
pGpjkl + ∂jζ

pGipkl + Gijpl∂kζ
p + Gijkp∂jζ

p). (4.14)

Then it is easy to see
{

TS(ζ), Q†ij 1

g
GijklQ

kl

}

= −∂m

(

Q†ij 1

g
GijklQ

kl

)

ζm. (4.15)
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Using this result and also the third equation in (4.12) we find

{TS(ζ),H0} = κ2[−ζk∂k
√

g − ∂kζ
k√g]

∞
∑

n=1

cn

(

Q†ij 1

g
GijklQ

kl

)n

−

−κ2√g

∞
∑

n=1

cn∂m

(

Q†ij 1

g
GijklQ

kl

)

ζm

(

Q†ij 1

g
GijklQ

kl

)n−1

=

= −∂kζ
kH0 − ζk∂kH0 (4.16)

and when we introduce the smeared form of the constraint H0

TT (f) =

∫

dDxf(x)H0(t,x) (4.17)

we obtain

{TS(ζ),TT (f)} = −
∫

dDxf(x)(∂kζkH0(x) + ζk∂kH0(x)) =

=

∫

dDx∂kf(x)ζkH0 = TT (∂kfζk). (4.18)

Finally the Poisson brackets of the diffeomorphism constraints is equal to

{TS(ζ),TS(ξ)} = TS(ζi∂iξ − ξi∂iζ). (4.19)

Now we come to the analysis of the most intricate Poisson bracket {TT (f),TT (ζ)}. Note

that the previous Poisson brackets were valid for any form of the constraint H0. On the

other hand we can certainly find an equivalent constraint using following observation. The

Hamiltonian constraint has the form H0 = f(Q†ijGijklQ
kl). Then instead imposing the

constraint H0 ≈ 0 we can impose the constraint
√

gQ†ijGijklQ
kl ≈ 0. This fact simplifies

the analysis considerably however it is still very intricate as was shown for example in [37]

where the analysis of the constraint algebra of 3+1 dimensional Hořava-Lifshitz theory was

performed with the result that the Poisson bracket of the constraint
√

gQ†ijGijklQ
kl ≈ 0 is

not closed but it generates new additional ones. The upshot of this analysis is that it seems

that the resulting theory does not contain any physical degrees of freedom. This seems to

be a serious problem of the Hořava-Lifshitz theory without projectability condition. On the

other hand there exists an alternative procedure how to solve the constraint H0 ≈ 0. This

idea was suggested in the original Hořava work [3]. Explicitly, the form of the constraint

H0(x) ≈ 0 suggests that the constraint H0(x) ≈ 0 can be solved by collection of constraints

Qij(x) ≈ 0. In other words we propose following alternative set of constraints of f(R)

Hořava-Lifshitz gravity

Hi(x) ≈ 0 , Qij(x) ≈ 0 (4.20)

or their smeared form

TS(ζ) =

∫

dDxζi(x)Hi(x) , Q(Λ) =

∫

dDxΛij(x)Qij(x) . (4.21)

Let us now show that this set of constraints forms the closed algebra. Since

{

Qij(x), Qkl(y)
}

= − i

2

δ

δgij(x)

δW

δgkl(y)
+

i

2

δ

δgkl(y)

δW

δgij(x)
= 0 (4.22)
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we easily find that

{Q(Λ),Q(Γ)} = 0 . (4.23)

Further, using (4.13) we find

{TS(ζ),Q(Λ)} =

∫

dDx(∂kΛijQ
ijζk + ∂kζ

iQkj + Qik∂kζ
j) =

= Q(∂kΛijζ
k + ∂iζ

kΛkj + Λik∂jζ
k) . (4.24)

These Poisson brackets together with (4.19) imply that the algebra of the constraints (4.21)

is closed. On the other hand as was stressed originally in [3] this set of constraints is cer-

tainly too strong and it turns out that the resulting theory is topological without any local

excitations. This conclusion however suggests that the Hořava-Lifshitz theory of grav-

ity without projectability condition has natural physical interpretation as the topological

theory of gravity.

A Ultralocal gravity

In this appendix we present an example of the Hořava-Lifshitz f(R) gravity that has closed

algebra of constraints. Using terminology introduced in [2] we call this theory as ultralocal

Hořava-Lifshitz f(R) gravity.

The simplest example of the ultralocal theory is characterized by condition that

Eij = 0 . (A.1)

Since in this case Qij = −Q†ij we find

{

Q†ij(x), Qkl(y)
}

= 0 ,
{

Qij(x),
1

g
Gklmn(y)

}

= −
{

Q†ij(x),
1

g
Gklmn(y)

}

(A.2)

and consequently

{

Q†ij 1

g
GijklQ

kl(x), Q†mn 1

g
GmnpqQ

pq(y)

}

= 0 . (A.3)

Then it is easy to determine the Poisson brackets of the constraints H0 ≈ 0 using the fact

that

{H0(x),H0(y)} =

∫

dx′dy′ δH0(x)

δ(Q†ijGijklQ
kl)(x′)

{

(Q†ijGijklQ
kl)(x′), (Q†ijGijklQ

kl)(y′)
}

×

× δH0(y)

δ(Q†ijGijklQ
kl)(y′)

= 0. (A.4)

Let us now consider the second example of ultralocal theory when W has the form

W = Λ
√

g . (A.5)
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In this case we easily find

Q†ij = −iπij +
1

4
Λgij√g , Qij = iπij +

1

4
Λgij√g . (A.6)

Now the Poisson brackets between Q†ij and Qkl is non-zero

{

Q†ij(x), Qkl(y)
}

= −i
Λ

4
(gikgjl + gilgkl)

√
gδ(x − y). (A.7)

It is important that this Poisson bracket is proportional to δ(x − y) and does not contain

derivative of delta function. Then with the help of this result and the second equation

in (A.2) we again find that

{

Q†ij 1

g
GijklQ

kl(x), Q†ij 1

g
GijklQ

kl(y)

}

= 0 (A.8)

and as follows from (A.4) the Poisson brackets of the Hamiltonian constraints vanish.

In summary, the ultralocal f(R) Hořava-Lifshitz gravity has the same nice property

as the ultralocal theory of gravity [67].
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constraint, arXiv:0906.5401 [SPIRES].

[10] J.-J. Peng and S.-Q. Wu, Hawking radiation of black holes in infrared modified
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gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [SPIRES].

[17] Y.-F. Cai and E.N. Saridakis, Non-singular cosmology in a model of non-relativistic gravity,

JCAP 10 (2009) 020 [arXiv:0906.1789] [SPIRES].

[18] F.-W. Shu and Y.-S. Wu, Stochastic quantization of the Hořava gravity, arXiv:0906.1645
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arXiv:0905.2786 [SPIRES].

[70] R.-G. Cai, L.-M. Cao and N. Ohta, Thermodynamics of black holes in Hořava-Lifshitz
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